Acta Crystallographica Section E

Structure Reports Online

and Shigeru Suzuki

ISSN 1600-5368

Jin Mizuguchi,* Kazuyuki Hino, Kazuyuki Sato, Hiroo Takahashi

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

Key indicators

Single-crystal X-ray study T=93 K Mean $\sigma(C-C)=0.004$ Å R factor = 0.039 wR factor = 0.073 Data-to-parameter ratio = 10.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N,N'-Di-3-pyridylperylene-3,4:9,10-bis-(dicarboximide)

The title compound, $C_{34}H_{16}N_4O_4$, is a perylene–imide pigment utilized for H_2 gas sensors. The molecule has C_i symmetry with one half-molecule in the asymmetric unit. The angle between each of the pyridyl rings and the perylene-imide skeleton is 54.88 (10)°. The molecules are stacked in a 'hunter's fence' fashion (viz. when viewed from the side, molecules, slipped by 45° within molecular stacks, cross each other in a fence-like structure) along the b axis.

Received 14 January 2005 Accepted 19 January 2005 Online 29 January 2005

Comment

Perylene compounds are industrially important pigments, covering a variety of shades from red *via* maroon to black (Herbst & Hunger, 1993). The title compound, (I), is a *meta*-pyridyl derivative, abbreviated to MPP.

$$R = \bigcup_{N \in \mathbb{N}} (I)$$

We have carried out a series of investigations on H₂ gas sensors utilizing a high proton affinity of organic pigments that have pyridyl rings connected directly to the choromophore (Takahashi & Mizuguchi, 2005). The N atom of the pyridyl ring acts as a strong proton acceptor and plays a decisive role for signal detection. MPP exhibits a resistivity change of about three orders of magnitude, even for 0.05 % H₂. Other than the present *meta* derivative, there are also *ortho* and *para* derivatives and their sensitivity is slightly different, depending on the site of the N atom. In this connection, structure analyses of these derivatives have been carried out. The structures of *ortho* and *para* derivatives are reported in the following papers (Mizuguchi *et al.*, 2005; Hino *et al.*, 2005). This paper reports the structure of the *meta* derivative.

The molecule of MPP (Fig. 1) is characterized by C_i symmetry. The angle between each of the pyridyl rings and the perylene-imide skeleton is 54.88 (10)°. The perylene-imide skeleton is planar (r.m.s. deviation = 0.035 Å). The molecules are stacked in a 'hunter's fence' fashion (viz. when viewed from the side, molecules, slipped by 45° within molecular stacks, cross each other in a fence-like structure) along the b axis, as shown in Fig. 2.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

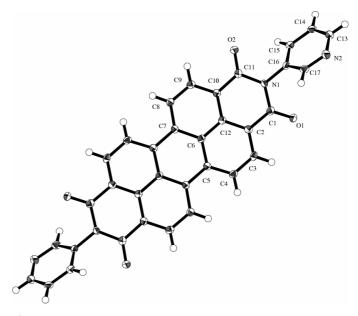
MPP was synthesized by reaction of perylenetetracarboxylic dianhydride with 1,2-di-3-pyridyldiamine in dimethylnaphthalene at 490 K for 3 h according to the method of Herbst & Hunger (1993). The product was then purified three times by sublimation at 760 K, using a two-zone furnace (Mizuguchi, 1981). Single crystals of MPP were grown from the vapor phase in a closed system based on a two-zone furnace. After 48 h, a number of single crystals were obtained in the form of needles.

Crystal data

	2
$C_{34}H_{16}N_4O_4$	$D_x = 1.633 \text{ Mg m}^{-3}$
$M_r = 544.51$	Cu K α radiation
Monoclinic, $P2_1/n$	Cell parameters from 6312
a = 15.422 (2) Å	reflections
b = 3.8275 (6) Å	$\theta = 3.2 - 65.5^{\circ}$
c = 19.282 (3) Å	$\mu = 0.90 \text{ mm}^{-1}$
$\beta = 103.29 (1)^{\circ}$	T = 93.2 K
$V = 1107.7 (3) \text{ Å}^3$	Needle, red
Z = 2	$0.50 \times 0.07 \times 0.03 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID Imaging	1922 independent reflections
Plate diffractometer	1009 reflections with $F^2 > 2\sigma(F^2)$
ω scans	$R_{\rm int} = 0.048$
Absorption correction: multi-scan	$\theta_{\rm max} = 68.2^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -18 \rightarrow 18$
$T_{\min} = 0.973, T_{\max} = 0.973$	$k = -4 \rightarrow 4$
10013 measured reflections	$l = -23 \rightarrow 23$


Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^2(F_o^2) + \{0.025[\text{Max}(F_o^2, 0) +$
$wR(F^2) = 0.073$	$2F_c^2]/3\}^2]$
S = 0.94	$(\Delta/\sigma)_{\rm max} < 0.001$
1922 reflections	$\Delta \rho_{\text{max}} = 0.23 \text{ e Å}^{-3}$
190 parameters	$\Delta \rho_{\min} = -0.25 \text{ e Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

O1-C1	1.222 (3)	C5-C6	1.433 (3)
O2-C11	1.218 (3)	C5-C7 ⁱ	1.470 (3)
N1-C1	1.414 (3)	C6-C7	1.431 (3)
N1-C11	1.411 (3)	C6-C12	1.418 (3)
C1-C2	1.475 (3)	C7-C8	1.394 (3)
C2-C3	1.381(3)	C8-C9	1.393 (3)
C2-C12	1.407 (3)	C9-C10	1.379 (3)
C3-C4	1.396 (3)	C10-C11	1.477 (3)
C4-C5	1.383 (3)	C10-C12	1.413 (3)
C1-N1-C11	124.1 (2)	C5 ⁱ -C7-C6	119.1 (2)
O1-C1-N1	120.5 (2)	C5i-C7-C8	122.0 (2)
O1-C1-C2	122.6 (2)	C6-C7-C8	118.9 (2)
N1-C1-C2	116.9 (2)	C7-C8-C9	121.1 (2)
C1-C2-C3	118.7 (2)	C8-C9-C10	121.1 (2)
C1-C2-C12	120.9 (2)	C9-C10-C11	119.4 (2)
C3-C2-C12	120.4 (2)	C9-C10-C12	119.5 (2)
C2-C3-C4	119.9 (2)	C11-C10-C12	121.0 (2)
C3-C4-C5	122.2 (2)	O2-C11-N1	120.6 (2)
C4-C5-C6	118.4 (3)	O2-C11-C10	122.7 (3)
C4-C5-C7i	122.2 (2)	N1-C11-C10	116.6 (2)
C6-C5-C7i	119.4 (2)	C2-C12-C6	119.8 (2)
C5-C6-C7	121.5 (2)	C2-C12-C10	120.0 (3)
C5-C6-C12	119.4 (3)	C6-C12-C10	120.2 (2)
C7-C6-C12	119.1 (2)		

Symmetry code: (i) 1 - x, 1 - y, -z.

Figure 1 A view of the molecular conformation of (I), showing 50% displacement ellipsoids for the non-H atoms. Unlabelled atoms are related to labelled atoms by 1-x, 1-y, -z

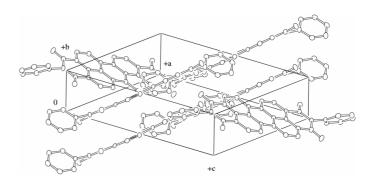


Figure 2
The packing arrangement of MPP

All H atoms were positioned geometrically [C-H = 0.95 Å and $U_{\rm iso}$ = 1.2 $U_{\rm eq}$ (C)] and refined using a riding model.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *TEXSAN* (Molecular Structure Corporation, 2001); program(s) used to solve structure: *SHELXS86* (Sheldrick, 198); program(s) used to refine structure: *TEXSAN*; molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996); software used to prepare material for publication: *TEXSAN*.

The authors are indebted to Mr I. Suzuki for experimental assistance.

References

Burnett, M. N. & Johnson, C. K.(1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.

Herbst, W. & Hunger, K. (1993). *Industrial Organic Pigments*, pp. 467–475. Weinheim: VCH.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Hino, K., Sato, K., Takahashi, H., Suzuki, S. & Mizuguchi, J. (2005). *Acta Cryst.* E**61**, 0440–0441.

organic papers

Mizuguchi, J. (1981). *Cryst. Res. Technol.* **16**, 695–700. Mizuguchi, J., Hino, K., Sato, K., Takahashi, H. & Suzuki, S. (2005). *Acta Cryst.* E61, o437-o439.

Molecular Structure Corporation (2001). TEXSAN. Version 1.11. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.

Rigaku (1998). *PROCESS-AUTO*. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1985). *SHELXS86. Crystallographic Computing 3*, edited by G. M. Sheldrick, C. Krüger & R. Goddard, pp. 175-189. Oxford University

Takahashi, H. & Mizuguchi, J. (2005). J. Electrochem. Soc. In the press.

o436 Jin Mizuguchi et al. • C₃₄H₁₆N₄O₄